
This file lists all the macros included in the file FORTRAN.DOT with description and source
code. It is an accessory to the related WUGNET article. Hopefully, this will give you some further
ideas on the use of WordBasic. I also include comments on how to apply many of these macros to real
world uses -- few people with a choice run FORTRAN on distant computers.

My experience: Prior to writing these macros, I wrote about 20 of them and looked at maybe 100
more. This is not a large experience base to depend upon. I expect that their are easier ways to handle
much of this code. If you know of any, please tell me.

Some notes on WordBasic: In addition to a unhelpful manual, WordBasic has a few other
problems: the really important commands cannot be run within the macro editor, macro recording is
the only way to identify a number of features (example, removing bookmarks) and shared data is
limited. Good news is that you can have 9 windows with files and 4 macro data files. Remember to
keep those macro data files closed or you will create an error.

 FDC : FDC is the extension I have given formatted fortran files. (If Word for PM were out, I'd
probably be adjusting the EA's).

The code is horribly unstructured; don't tell my professors. Also, I left out a lot of potential error
checking. And, I am using brute force macros . This kept the macros short enough not to be mind-
boggling; too many people have been intimidated by do everything macros.

Added Bonus: If permisssion is granted, a listing of all the current Winword Knowledge Base
articles will be appended. Most of the articles do relate cover portions of WordBasic and really are
useful.

Acknowledgments: To the Winword Gadflies and their Microsoft counterparts (Guy Gallo, Barry
Simon, James Gleick, Doug Timpe, Steve Itijima, and Michael Cockrill) for making WordBasic a tad
less daunting.

Enough ChitChat -- Its time to meet the macros
A Modern Day Stone Age Editor

(Just think: next time I might clone EDLIN)

AutoNew: Starts every time you run the file and inserts our template text (hidden in a glossary).
Placing the text in a glossary makes it much easier to edit than embedded in a template. (But the

template is much better if you must insert large amounts of boilerplate.)

RWWABOUT: Simple message box with design info. It could be extended for simple help.
(Larger help requires the help compiler kit).

FDCNEW: Starts a new file using FORTRAN.DOT as the template. This macro and FdcOpen
could be placed on the global menus to permit Fdc operation from any position.

FDCOPEN: Uses the standard file.open dialog box to open a FDC file.

FDCSAVE: Forces saves in both a Word format and a text format. (Text for the compiler; Word to
keep all the support straight.) Modify this for automatic backups in other disks.

FDCCLOSE: Closes the Fdc file and makes sure changes are also saved as text.

FdcDoLoop: Uses value stored in a bookmark to create a new line number and then updates the
bookmark. Good for any special incrementing counters.

FdcLineNumFile: One of four line number insertion routines. This one merely checks if the
number has been used according to a data file. When a valid number is chosen, it updates the disk file.
(This is a good way to share reverse dictionaries between files.) It will not adjust for discarded line
numbers. A bookmark based routine was dropped,. While clearly the best for information needed by
only one document, it was big, hard to update, and it had to remain hidden.

FdcLineNumSearch: Same as above; except we run a search for any matching text. This is best if
you a few elements all appearing in a similar format. It is slow, however.

FdcLineNum: The simple version of the last two.

InsertComment Continue, and Normal: Each of these three macros just inserts a glossary entry.
This is required to do a keybinding.

MainFrame: We do three things on this one: save the current file, switch to a running
TERMINAL, or start a new one.

DataFile: This is my pride and joy. DataFile is a form fillin macro. Unlike a related macro I did
(which inserted text into a table on the current document), the need to open a new window and save
took a surprisingly long time to debug. (Note, a early version did not create another file. However, I
had some problems forcing Winword to save the file correctly, using WordBasic file handling
routines.)

And now -- the macros themselves:

Sub MAIN
REM AutoNew Macro -- creates template text
EditGlossary .Name = "FHeader", .Context = 1, .Insert
End Sub

Sub MAIN
REM RWWABOUT macro -- displays info.
MsgBox "FORTAN.DOT created by R. William Wells", "TEMPLATE ABOUT", 0
End Sub

REM FdcNew -- creates new file using template
Sub MAIN
FileNew 0, "FORTRAN"
End Sub

REM FdcOpen -- Uses File.Open to open FDC files
Sub MAIN
Dim lg As FileOpen
GetCurValues lg
lg.Name = "*.FDC"
Dialog lg
Super File Open lg
End Sub

REM FdcSave -- Saves 2 files: one FDC with formatting and one FOR pure text
Sub MAIN
Temp = Instr(,WindowName$(),".")
Temp$ = Left$(WindowName$(), Temp)
FileSaveAs Temp$ + ".FDC", 0
FileSaveAs Temp$ + ".FOR", 2
End Sub

Sub MAIN
REM FdcClose -- special File.Close for Fdc files
If(IsDirty() =(- 1)) Then
Message$ = "Save any changes to " + WindowName$(0) + "?"
Value = MsgBox(Message$, 35) + 2
Else
Value = 2
End If
Select Case Value
Case 1
FdcSave
FileClose WindowName$()
Case 2
FileClose WindowName$()
Case Else
Cancel
End Select
End Sub

Sub MAIN
REM FdcDoLoop -- creates Do Continue structures with Line #'s held in Bookmark
REM Start With Basic Info
Do$ = GetGlossary$("FdcContinueLine", 1)
StartOfLine
Insert Do$
REM Need Bookmark To Return Here
InsertBookmark .Name = "FdcCurrent"
REM Grab the last line value add 1, insert into document
Line$ = GetBookmark$("FdcDoLine")
Temp = Val(Line$) + 1
Line$ = Str$(Temp)
LineUp 3
EndOfLine
Insert Line$
LineDown 2
StartOfLine
REM Line$ will be at most 4 characters; start of line must have 6
Insert(" " + Left$(Line$ + " ", 4) + " ")
REM Update old Line Value and Return to the starting point

EditGoTo .Destination = "FdcDoLine"
InsertBookmark .Name = "FdcDoLine", .Delete
EditClear
Insert Line$
WordLeft 1, 1
InsertBookmark .Name = "FdcDoLine"
EditGoTo .Destination = "FdcCurrent"
InsertBookmark .Name = "FdcCurrent", .Delete
End Sub

REM FdcLineNumFile -- creates a file of already used line #s
Sub MAIN
REN Let's find out if the file exists and open it
OldLine$ = " "
On Error Goto There
Tmp$ = File$("*FORTRAN.TXT")
If Tmp$ <> "" Then
Open "FORTRAN.TXT" For Input As #1
Line Input #1, OldLine$
Close 1
REM We will be saving changes - remove old copy
Kill "FORTRAN.TXT"
EndIf
There: InUse = 0
On Error Goto 0
REM Now get new line number and test it
LineNum$ = InputBox$("Enter Line Number")
If Len(LineNum$) <= 4 Then LineNum$ = LineNum$ + " "
For I = 1 To Len(OldLine$) Step 4
If Mid$(OldLine$, I, 4) = LineNum$ Then
MsgBox "ERROR LINE NUMBER IN USE"
InUse = 1
End If
Next I
If InUse = 1 Then Goto There
REM Insert new number in the front of the line
StartOfLine
LineNum$ = " " + Left$(LineNum$, 4) + " "
Insert LineNum$
REM Update info file
OldLine$ = OldLine$ + Mid$(LineNum$,2,4)
Open "FORTRAN.TXT" For Output As 1
Print 1, OldLine$
Close 1
End Sub

REM Insert Line Number and see if it is in use
REM Use Bookmark "Current" to ensure we return here

Sub MAIN
InsertBookmark "Current"
THERE: LineNum$ = InputBox$("Enter Line Number")
If Len(LineNum$) <= 4 Then LineNum$ = LineNum$ + " "
Search$ = "^p " + Left$(LineNum$, 4) + " "
EditSearch Search$
If EditSearchFound() = - 1 Then Goto THERE
EditGoTo "Current"
StartOfLine
LineNum$ = " " + Left$(LineNum$, 4) + " "
Insert LineNum$
InsertBookmark .Name = "Current", .Delete
End Sub

REM idiot Line # inserter
Sub MAIN
LineNum$ = InputBox$("Enter Line Number")
If Len(LineNum$) <= 4 Then LineNum$ = LineNum$ + " "
LineNum$ = " " + Left$(LineNum$, 4) + " "
Insert LineNum$
End Sub

REM Iserts Comment Glossary
Sub MAIN
EditGlossary .Name = "FCOMMENT", .Context = 1, .Insert
End Sub

REM Inserts Continue Line Glossary
Sub MAIN
EditGlossary .Name = "FContinue", .Context = 1, .Insert
End Sub

REM Inserts Normal Line Glossary (6 spaces)
Sub MAIN
EditGlossary .Name = "FNormal", .Context = 1, .Insert
End Sub

REM MainFrame -- Saves and transfers files to HP for compile
Sub MAIN
REM Save Current Files in event of crash
FdcSave
REM Well, if its running; don't need another copy
On Error Goto Europe
AppActivate "Terminal", 1
On Error Goto 0
REM Shell out and hook up to mainframe
Europe: Shell "TERMINAL.EXE HP.TRM", 1

End Sub

REM Macro DataFile creates correctly spaced text to be read with a format statement
REM Really long macro here

Sub MAIN

Dim dlg As UserDialog

REM Create general data entry dialog

Begin Dialog UserDialog 320, 245
Text 8, 13, 290, 18, "&Employee Name."
TextBox 8, 33, 290, 18, .Name
Text 8, 53, 290, 18, "Employee &Number:"
TextBox 8, 73, 290, 18, .number
Text 8, 93, 290, 18, "&Region:"
TextBox 8, 113, 290, 18, .region
Text 8, 133, 290, 18, "&Sales:"
TextBox 8, 153, 290, 18, .sales
Text 8, 173, 290, 18, "&Commission:"
TextBox 8, 193, 290, 18, .comm
OKButton 45, 220, 64, 18
CancelButton 205, 220, 64, 18
End Dialog

REM Use a new file to store the lines of text
FileNew 0, "NORMAL.DOT"
F$ = InputBox$("Number of lines to insert")
F = Val(F$)
For I = 1 To F
Dialog dlg
Name$ = dlg.Name + " "
Number$ = dlg.number + " "
Region$ = dlg.region + " "
Sales$ = dlg.sales + " "
Comm$ = dlg.comm + " "
Line$ = Left$(Name$, 16) + Left$(Number$, 5) + Left$(Region$, 2) + Left$(Sales$, 8) + Left$
(Comm$, 4) + Chr$(11)
Insert Line$
Next I
On Error Goto 0

REM Well, it worked. Save as text and close (no save) window
FileSaveAs "DATAFILE.DAT", 2
FileClose 2

REM standard abort is here
cancelled:
End Sub

